Shared:2019FinalPhase2

From cs
Revision as of 14:47, 21 April 2020 by Henriette Bier (Talk | contribs)

Jump to: navigation, search


Off-Earth Manufacturing and Construction (of Habitats)

Phase 2

Title

Rhizome: Development of an Autarkic Design-to-Robotic-Production and -Operation System for Building Off-Earth Rhizomatic Habitats

Keywords

Autarkic system, underground habitat, data-driven design, robotic production, renewable energy

Source

https://docs.google.com/document/

Team

The University of Technology (Dutch: Technische Universiteit) Delft is also known as TU Delft, is the largest and oldest Dutch public technological university, located in Delft, Netherlands. As of 2019, it is ranked in the top 20 best universities for engineering and technology worldwide and is the highest-ranked university in the Netherlands. The team consists of researchers and students with various backgrounds and expertise: Dr. Henriette Bier (architecture: RB), Dr. Roland Schmehl (aerospace: wind energy), Dr. Angelo Cervone (aerospace: space systems engineering), MSc. Arwin Hidding (architecture: RB), MSc. Arise Wan (architecture: RB), MSc-cand. Edwin Vermeer (architecture: RB), BSc-cand. Maneesh Verma (aerospace: swarm robots), MSc-cand. Krishna Jani (architecture: RB), MSc-cand. Emma Chris Avramiea (architecture: RB), and MSc-cand. Siddharth Popatlal Jain (architecture: RB). 3 groups from two TU Delft faculties participate in this proposal:

Architecture and the Built Environment: Robotic Building (RB)

The Architecture Faculty at TU Delft is ranked third in the world after MIT and Bartlett. The Robotic Building group has been established in 2014 with the first robotic lab at the Architecture Faculty (http://www.roboticbuilding.eu/about/). Its research and education focus on (a) physically built robotically augmented environments and (b) robotically supported building processes. Reconfigurable, robotic environments incorporating sensor-actuator mechanisms that enable buildings to interact with their users and surroundings in real-time may require the design to production, assembly, and operation chains that may be (in part or as a whole) implemented by robotic means. In several funded projects the group has developed expertise in 3D printing with ceramic clay, thermo-plastic elastomers, and silicon.

Aerospace: Space Systems Engineering

Through the Space Systems Engineering chair of the Aerospace Engineering Faculty, TU Delft plays a leading role in the European research on space systems engineering, distributed space systems and nanosatellite design as well as radio hardware, analogue and digital circuit design, micro-systems technology. Research activities at the Space Systems Engineering chair focus on enabling technologies within space engineering. The chair research strategy is to realize complex space systems in an end-to-end engineering approach. In the last 10 years, the department has successfully developed, launched and operated in space the Delfi-C3 and Delfi-Next satellites, and is consequently recognized worldwide as a flagship in nano-satellite development. An important part of the Space Systems Engineering research activities is dedicated to the Delfi program, within which end-to-end engineering of miniaturized satellite platform is conducted in close synergy with the educational activities of the group. Recent projects in which the chair has been involved include: Stardust-R, an extensive consortium of 22 European and international partners on the exploration and exploitation of asteroids to make the use of space sustainable; LUMIO, a Cubesat mission for micrometeoroid impact detection on the Lunar far side; FleRaSS, a project related to the design of a flexible radio science system for new generation spacecraft; QB50, an international network of 50 CubeSats for lower thermosphere measurements and re-entry research.

Aerospace: Airborne wind energy

The Airborne Wind Energy Research Group is part of the Section of Wind Energy and a pioneer in the exploration of innovative wind energy solutions using tethered flying devices. From 2010 until 2015, the group has operated a unique 20 kW kite power system at their test center on the former Naval airbase Valkenburg, demonstrating automatic operation first in 2012. Since 2016 the technology is scaled up to 100 kW and commercially developed by spin-off company Kitepower BV. The research group has coordinated the EU F7 project NUMIWING, the EU H2020 doctoral training network AWESCO and the EU H2020 “Fast Track to Innovation” project REACH.

Collaborators / Partners

WUR (https://wur.nl/), ESA (https://www.esa.int), DRI (https://tudelftroboticsinstitute.nl), SAM|XL (https://samxl.com), 3D Robot Printing (https://www.3d-robotprinting.com), DGF (http://dutchgrowthfactory.com), Kitepower BV (http://www.kitepower.nl).

Study

1. ­Development of planetary/stellar rhizomatic habitat with integrated environmental control and life-support system

2. Advancement of autarkic data-driven Design-to-Robotic-Production and -Operation (D2RP&O) system using in-situ resources and solar/kite power

3. Development of excavation and 3D printing approach using rover swarm and D2RP&O system

4. ­Integration/Development of sun and kite power systems