Difference between revisions of "Main Page"

From cs
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__ __NOTITLE__
 
__NOTOC__ __NOTITLE__
 +
<br>
 +
<span style="font-size: 26px; color: grey;">'''ROBOTIC BUILDING @AE MSc 3 2019-20: &nbsp; Cyber-physical Space'''</span><br>
 +
<span style="font-size: 12px;"> '''Team: Henriette Bier | Arwin Hidding | Wan Mei Zhen (TBC) | Vera Laszlo '''<br>'''Guests: Marta Male-Alemany (HvA) | Teun Verkerk (DSC) | 3D Robot Printing | Dassault Systems'''
 +
<br>
 +
<br>
 +
 +
'''Keywords'''
 +
----
 +
Plug-in habitat / Reconfigurable and customizable working-living units / Design-to- Robotic-Production and  -Operation
 +
<br>
 +
<br>
 +
 +
'''Framework'''
 +
----
 +
This semester MSc 3 engages in the investigation of utopian/dystopian visions utopian/dystopian visions on future habitats
 +
by reinterpreting Constant’s New Babylon and revisiting today’s societal challenges such as rapid urban densification,
 +
overpopulation, scarcity, migration, pollution, climate change, etc. By introducing static and dynamic functionalities
 +
such as mega infrastructures (consisting of structural frame, circulation, water and electricity, etc.) with reconfigurable
 +
furnishing designed and produced by means of D2RP&O the studio aims to challenge existing concepts for living and working
 +
environments. In particular, it takes the opportunity to reflect on the influence of new technologies such as artificial
 +
intelligence, robotics, and 3D printing on architecture. The proposed computationally designed and robotically produced
 +
structure relies on these technologies and embeds artificial intelligence in its sensor-actuators mechanisms in order
 +
to allow users to customize operation and use of such innovative cyber-physical spaces. Utopian/dystopian aspects are
 +
addressed by exploring the potential of cyber-physical systems in architecture (D2RPA&O), the challenges of climate
 +
change, overpopulation and urban densification in the Randstad as well as challenges of the possible Mars colonisation.
 +
 +
The Mars Challenge is put forward by Dassault Systems, who invited RB team to participate. STUDENTS joining the Dassault
 +
Systems HOME MARS Challenge:
 +
<ul>
 +
<li>Have an exclusive one year access to discover CATIA new applications and the most advanced experience design platform on the Cloud, the 3DEXPERIENCE Platform;</li>
 +
<li>Build confidence in a close and privileged relalationship with 3DS Experts;</li>
 +
<li>Network with 3DS most trusted partners / opening doors to successful job opportunities;</li>
 +
<li>Earn visibility 1by having proposed designs prototyped and exhibited in Paris;</li>
 +
<li>Expect an awesome prize for the winning team.</li>
 +
</ul>
 +
 +
IMAGE
 +
 +
<br>
 +
 +
<hr>
  
 
<br>
 
<br>

Revision as of 09:03, 5 April 2019


ROBOTIC BUILDING @AE MSc 3 2019-20:   Cyber-physical Space
Team: Henriette Bier | Arwin Hidding | Wan Mei Zhen (TBC) | Vera Laszlo
Guests: Marta Male-Alemany (HvA) | Teun Verkerk (DSC) | 3D Robot Printing | Dassault Systems

Keywords


Plug-in habitat / Reconfigurable and customizable working-living units / Design-to- Robotic-Production and -Operation

Framework


This semester MSc 3 engages in the investigation of utopian/dystopian visions utopian/dystopian visions on future habitats by reinterpreting Constant’s New Babylon and revisiting today’s societal challenges such as rapid urban densification, overpopulation, scarcity, migration, pollution, climate change, etc. By introducing static and dynamic functionalities such as mega infrastructures (consisting of structural frame, circulation, water and electricity, etc.) with reconfigurable furnishing designed and produced by means of D2RP&O the studio aims to challenge existing concepts for living and working environments. In particular, it takes the opportunity to reflect on the influence of new technologies such as artificial intelligence, robotics, and 3D printing on architecture. The proposed computationally designed and robotically produced structure relies on these technologies and embeds artificial intelligence in its sensor-actuators mechanisms in order to allow users to customize operation and use of such innovative cyber-physical spaces. Utopian/dystopian aspects are addressed by exploring the potential of cyber-physical systems in architecture (D2RPA&O), the challenges of climate change, overpopulation and urban densification in the Randstad as well as challenges of the possible Mars colonisation.

The Mars Challenge is put forward by Dassault Systems, who invited RB team to participate. STUDENTS joining the Dassault Systems HOME MARS Challenge:

  • Have an exclusive one year access to discover CATIA new applications and the most advanced experience design platform on the Cloud, the 3DEXPERIENCE Platform;
  • Build confidence in a close and privileged relalationship with 3DS Experts;
  • Network with 3DS most trusted partners / opening doors to successful job opportunities;
  • Earn visibility 1by having proposed designs prototyped and exhibited in Paris;
  • Expect an awesome prize for the winning team.

IMAGE




Robotic Building MSc 2 Spring 2018:   Cyber-physical Space
Team: Henriette Bier | Sina Mostafavi | Alex Liu Cheng | Yu-Chou Chiang | Arwin Hidding | Vera Laszlo | Rosanne la Roy
Guests: Teun Verkerk (DSC) | Philip Beesley (PBA and UoW) | Adrien Ravon (MVRDV and TUD)

Keywords


On-demand / Plug-in habitat / Reconfigurable and customisable working-living / playing units / Design-to-Robotic-Production / Design-to-Robotic-Operation

Framework


This semester MSc 2 engages in the investigation of utopian/dystopian visions about future habitats by reinterpreting Constant’s New Babylon and introducing static and dynamic functionalities such as infrastructure (structural frame, circulation, water and electricity, etc.) and reconfigurable furniture respectively.

Utopian/dystopian aspects are addressed by exploring the potential of cyberphysical systems in architecture (D2RPA&O), the challenges of overpopulation and urban densification, etc.




1. Utopia/Dystopia


Utopias envision ideal communities or societies possessing perfect socio-politicolegal systems. The term is derived from More’s book titled Utopia (1516). For instance, Constant’s New Babylon envisioned a city of the future where land is owned collectively, work is fully automated and thus human work is replaced with a nomadic life of creative play.

In contrast dystopias are communities or societies that are undesirable or even frightening as for instance described in Orwell’s 1984 (1949). These are characterized by dehumanization, totalitarianism, environmental disaster, or other characteristics associated with a cataclysmic decline in society.

2. Customization and reconfiguration


The proposed cyber-physical space is controlled or monitored by computer-based algorithms, integrated with the Internet of Things (IoT) and its users. Physical and software components are, in this context, deeply intertwined. The static and dynamic modalities of the space involve customization and reconfiguration, which will be achieved by means of Design-to-Robotic-Production and –Operation (D2RP&O).

Approach


Students will work with a generic bounding box representing a part of the megastructure that is overimposed on an existing city. Within this bounding box students will develop designs for customizable and reconfigurable units based on user scenarios.