First Pitch

- 1. Overall Scheme

- Subtractive Layer
 Intermediate layer
 Additive Layer
 Breathable innermost Layer

First Pitch

- 1. Overall Scheme
- 2. Subtractive Layer
- 3. Intermediate layer
- 4. Additive Layer
- 5. Breathable innermost Layer

OVERALL SCHEME CONCEPT

First Pitch

- 1. Overall Scheme
- 2. Subtractive Layer
- 3. Intermediate layer
- 4. Additive Layer
- 5. Breathable innermost Layer

LOGIC FOR SUBTRACTIVE LAYER: ANCHORS WITH MODULAR PANELS

- -Improved contact surface and anchorage.
- -Anchor points determined based on gravity load and surface inclination.
- -Anchor depth and interlocking geometry can also be determined parametrically.

First Pitch

- 1. Overall Scheme
- 2. Subtractive Layer
- 3. Intermediate layer
- 4. Additive Layer
- 5. Breathable innermost Layer

LOGIC FOR INTERMEDIATE LAYER: AIR CUSHIONS AS ACOUSTIC, VENTILATIVE AND THERMAL LAYER

- -Air cushions to act as springs for dampening the vibrations
- -Also use this buffer to moderate air temperatures within the space
- -Balance pressure based on sensors detecting movement/proximity

First Pitch

- 1. Overall Scheme
- 2. Subtractive Layer
- 3. Intermediate layer
- 4. Additive Layer
- 5. Breathable innermost Layer

LOGIC FOR ADDITIVE LAYER

- Additive layer to act as pathways for service lines.
- Ventilation will be a key aspect.
- The form and material is informed by acoustic principles
- The form can include varying layer thicknesses
- While the material itself can provide for good absorption to decrease echos

First Pitch

- 1. Overall Scheme
- 2. Subtractive Layer
- 3. Intermediate layer
- 4. Additive Layer
- 5. Breathable innermost Layer

LOGIC FOR BREATHABLE INNERMOST LAYER

- Position informed by the additive layer
- -Cavities that are activated by sensors to modulate the rate of ventilation (based on human presence)
- Layer porosity changes as per need

- 1. Overall Scheme
- Structural analysis
 Structural concepts

- Acoustic analysis
 Acoustic concepts
 Connecting concepts
 Oxygen system Analysis

Second Pitch

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

OVERALL SCHEME CONCEPT

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

Second Pitch

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

Results

FINAL MORPHED GEOMETRIES

Second Pitch

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

Results

Second Pitch

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

Results Translation into design

Second Pitch

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

Translation into design

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

- 1. Acoustic panel:
- 2. Diffuses sound
- 3. Structurally stable
- 4. Air gaps for better insulation
- 5. 3D printable
- 6. Modular
- 7. Can take any shape and form
- 8. Eg. circular, spherical, angled corners etc.
- 9. Size and thickness can vary

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

Second Pitch

- 1. Overall Scheme
- 2. Structural analysis
- 3. Structural concepts
- 4. Acoustic analysis
- 5. Acoustic concepts
- 6. Connecting concepts
- 7. Oxygen system Analysis

OGS (Oxygen generation system)

By using electrolysis, water is transformed into oxygen and hydrogen in this system.

Production:

- Continuous operation 9 kg of oxygen per day
- Cyclic operation 5.5 kg of oxygen per day

Oxygen required:

- 840 g per person per day
- Replacement of oxygen lost due to experiment use, airlock depressurisation, module leakage and carbon dioxide venting.

Hydrogen:

- Hydrogen is fed into the Sabatier reactor
- Combines the H2 with CO2 to create water and methane.
- The water then feeds back into OGS

Water:

- Sabatier reactor
- Recycled water from urine, waste water, condensation.
- Ice below Mars's surface could be used.

